Cryptography and Network Security Chapter 5

Fourth Edition by William Stallings

Lecture slides by Lawrie Brown

Origins

> clear a replacement for DES was needed

- have theoretical attacks that can break it
- have demonstrated exhaustive key search attacks
> can use Triple-DES - but slow, has small blocks
$>$ US NIST (National Institue of Standards and Technology) issued call for ciphers in 1997
> 15 candidates accepted in Jun 98
> Rijndael was selected as the AES in Oct-2000
> issued as FIPS PUB 197 standard in Nov-2001

AES Requirements

> private key symmetric block cipher
> 128-bit data, 128/192/256-bit keys
> stronger \& faster than Triple-DES
provide full specification \& design details
both C \& Java implementations

AES Evaluation Criteria

initial criteria:

- security - effort for practical cryptanalysis
- cost - in terms of computational efficiency
- algorithm \& implementation characteristics
$>$ final criteria
- general security
- ease of software \& hardware implementation
- implementation attacks
- flexibility (in en/decrypt, keying, other factors)

AES Shortlist

> after testing and evaluation, shortlist in Aug-99:

- MARS (IBM) - complex, fast, high security margin
- RC6 (USA) - v. simple, v. fast, low security margin
- Rijndael (Belgium) - clean, fast, good security margin
- Serpent (Euro) - slow, clean, v. high security margin
- Twofish (USA) - complex, v. fast, high security margin

The AES Cipher - Rijndael

designed by Rijmen-Daemen in Belgium
> has 128/192/256 bit keys, 128 bit data
$>$ an iterative rather than feistel cipher

- processes data as block of 4 columns of 4 bytes
- operates on entire data block in every round
> designed to be:
- resistant against known attacks
- design simplicity

AES Parameters

Key Size (words/bytes/bits)	$4 / 16 / 128$	$6 / 24 / 192$	$8 / 32 / 256$
Plaintext Block Size (words/bytes/bits)	$4 / 16 / 128$	$4 / 16 / 128$	$4 / 16 / 128$
Number of Rounds	10	12	14
Round Key Size (words/bytes/bits)	$4 / 16 / 128$	$4 / 16 / 128$	$4 / 16 / 128$
Expanded Key Size (words/bytes)	$44 / 176$	$52 / 208$	$60 / 240$

Rijndael

data block of 4 columns of 4 bytes is state
> key is expanded to array of words
> has 10/12/14 rounds in which state undergoes:

- byte substitution (1 S-box used on every byte)
- shift rows (permute bytes between groups/columns)
- mix columns (subs using matrix multipy of groups)
- add round key (XOR state with key material)
- view as alternating XOR key \& scramble data bytes

Rijndael

Byte Substitution

> a simple substitution of each byte
$>$ uses one table of 16×16 bytes containing a permutation of all 2568 -bit values
$>$ each byte of state is replaced by byte indexed by row (left 4-bits) \& column (right 4-bits)

- eg. byte $\{95\}$ is replaced by byte in row 9 column 5
- which has value \{2A\}
$>$ designed to be resistant to all known attacks

Byte Substitution

S-box

		y															
		0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F
\boldsymbol{x}	0	63	7C	77	7B	F2	6B	6F	C5	30	01	67	2B	FE	D7	AB	76
	1	CA	82	C9	7D	FA	59	47	F0	AD	D4	A2	AF	9 C	A4	72	C0
	2	B7	FD	93	26	36	3F	F7	CC	34	A5	E5	F1	71	D8	31	15
	3	04	C7	23	C3	18	96	05	9A	07	12	80	E2	EB	27	B2	75
	4	09	83	2C	1A	1B	6 E	5A	A0	52	3B	D6	B3	29	E3	2F	84
	5	53	D1	00	ED	20	FC	B1	5B	6A	CB	BE	39	4A	4C	58	CF
	6	D0	EF	AA	FB	43	4D	33	85	45	F9	02	7 F	50	3C	9F	A8
	7	51	A3	40	8F	92	9D	38	F5	BC	B6	DA	21	10	FF	F3	D2
	8	CD	0C	13	EC	5F	97	44	17	C4	A7	7E	3D	64	5D	19	73
	9	60	81	4 F	DC	22	2A	90	88	46	EE	B8	14	DE	5E	0B	DB
	A	E0	32	3A	0A	49	06	24	5C	C2	D3	AC	62	91	95	E4	79
	B	E7	C8	37	6D	8D	D5	4E	A9	6C	56	F4	EA	65	7A	AE	08
	C	BA	78	25	2E	1C	A6	B4	C6	E8	DD	74	1F	4B	BD	8B	8A
	D	70	3E	B5	66	48	03	F6	0E	61	35	57	B9	86	C1	1D	9E
	E	E1	F8	98	11	69	D9	8E	94	9B	1E	87	E9	CE	55	28	DF
	F	8C	A1	89	0D	BF	E6	42	68	41	99	2D	0F	B0	54	BB	16

(a) S-box

Shift Rows

> a circular byte shift in each each

- $1^{\text {st }}$ row is unchanged
- $2^{\text {nd }}$ row does 1 byte circular shift to left
- 3rd row does 2 byte circular shift to left
- 4th row does 3 byte circular shift to left
> decrypt inverts using shifts to right
> since state is processed by columns, this step permutes bytes between the columns

Shift Rows

Mix Columns

> each column is processed separately
> each byte is replaced by a value dependent on all 4 bytes in the column
$\left[\begin{array}{cccc}02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02\end{array}\right]\left[\begin{array}{llll}s_{0,0} & s_{0,1} & s_{0,2} & s_{0,3} \\ s_{1,0} & s_{1,1} & s_{1,2} & s_{1,3} \\ s_{2,0} & s_{2,1} & s_{2,2} & s_{2,3} \\ s_{3,0} & s_{3,1} & s_{3,2} & s_{3,3}\end{array}\right]=\left[\begin{array}{cccc}s_{0,0}^{\prime} & s_{0,1}^{\prime} & s_{0,2}^{\prime} & s_{0,3}^{\prime} \\ s_{1,0}^{\prime} & s_{1,1}^{\prime} & s_{1,2}^{\prime} & s_{1,3}^{\prime} \\ s_{2,0}^{\prime} & s_{2,1}^{\prime} & s_{2,2}^{\prime} & s_{2,3}^{\prime} \\ s_{3,0}^{\prime} & s_{3,1} & s_{3,2}^{\prime} & s_{3,3}^{\prime}\end{array}\right]$

Mix Columns

Mix Columns

Press enter

Add Round Key

XOR state with 128 -bits of the round key
> again processed by column (though effectively a series of byte operations)
> inverse for decryption identical

- since XOR own inverse, with reversed keys
$>$ designed to be as simple as possible
- a form of Vernam cipher on expanded key
- requires other stages for complexity / security

Add Round Key

$s_{0,0}$	$s_{0,1}$	$s_{0,2}$	$s_{0,3}$					
$s_{1,0}$	$s_{1,1}$	$s_{1,2}$	$s_{1,3}$					
$s_{2,0}$	$s_{2,1}$	$s_{2,2}$	$s_{2,3}$					
$s_{3,0}$	$s_{3,1}$	$s_{3,2}$	$s_{3,3}$	$\oplus w_{i} w_{i+1} w_{i+2} w_{i+3}=$	$s_{0,0}^{\prime}$	$s_{0,1}^{\prime}$	$s_{0,2}^{\prime}$	$s_{0,3}^{\prime}$
:---	:---	:---	:---					
$s_{1,0}^{\prime}$	$s_{1,1}^{\prime}$	$s_{1,2}^{\prime}$	$s_{1,3}^{\prime}$					
$s_{2,0}^{\prime}$	$s_{2,1}^{\prime}$	$s_{2,2}^{\prime}$	$s_{2,3}^{\prime}$					
$s_{3,0}^{\prime}$	$s_{3,1}^{\prime}$	$s_{3,2}^{\prime}$	$s_{3,3}^{\prime}$					

AES Round

AES Key Expansion

> takes 128-bit (16-byte) key and expands into array of 44/52/60 32-bit words
> start by copying key into first 4 words
$>$ then loop creating words that depend on values in previous \& 4 places back

- in 3 of 4 cases just XOR these together
- $1^{\text {St }}$ word in 4 has rotate + S-box + XOR round constant on previous, before XOR $4^{\text {th }}$ back

AES Key Expansion

Function g

j	1	2	3	4	5	6	7	8	9	10
$\mathrm{RC}[\mathrm{j}]$	01	02	04	08	10	20	40	80	1 B	36

Table 5.3 Key Expansion for AES Example

Key Words	Auxiliary Function
$\begin{array}{lllll} \text { w0 }=0 \text { of } & 15 & 71 & \text { c9 } \\ \text { w1 } & =47 & \text { d9 } & \text { e8 } & 59 \\ \text { w2 } & =\text { oc } & \text { b7 } & \text { ad } \end{array}$	RotWord (w3) =f 67 98 af $=\mathrm{x} 1$ SubWord $(\mathrm{x} 1)=\mathrm{d} 2$ 85 46 $79=\mathrm{y} 1$ Rcon $(1)=01$ 00 00 00 $\mathrm{y} 1 \oplus \operatorname{Rcon}(1)=\mathrm{d} 3$ 85 $46 \quad 79=\mathrm{z} 1$.
	RotWord (w7) $=81 \quad 15$ a7 $38=x 2$ SubWord (x4) $=0 \mathrm{c} 59$ 5c $07=\mathrm{y} 2$ Rcon (2) $=02000000$ $\mathrm{y} 2 \oplus \operatorname{Rcon}(2)=0 e 595 \mathrm{c} \quad 07=\mathrm{z} 2$
	RotWord (w11) $=$ ff d3 c6 e6 $=$ x3 SubWord $(x 2)=1666$ b4 $83=y 3$ Rcon (3) $=0400 \quad 00 \quad 00$ $\mathrm{y} 3 \oplus \operatorname{Rcon}(3)=12 \quad 66 \mathrm{~b} 4 \quad 8 \mathrm{e}=\mathrm{z} 3$
$\begin{aligned} & \mathrm{w} 12=\mathrm{w} 8 \oplus \mathrm{z} 3=\mathrm{c} 0 \text { af df } 39 \\ & \mathrm{w} 13=\mathrm{w} 12 \oplus \mathrm{w} 9=89 \quad 2 \mathrm{f} \\ & \mathrm{w} 14=67 \\ & \mathrm{w} 15=\mathrm{w} 13 \oplus \mathrm{w} 10=57 \\ & \mathrm{w} 14 \end{aligned}+\mathrm{w} 11=\mathrm{b} 1 \text { ad } 06$	RotWord (w15) $=$ ae $7 \mathrm{e} \mathrm{c} 0 \mathrm{~b} 1=\mathrm{x} 4$ SubWord $(x 3)=$ e4 f3 ba c8 $=$ y 4 Rcon (4) $=08 \quad 00 \quad 00 \quad 00$ $\mathrm{Y}^{4} \oplus \operatorname{Rcon}(4)=$ ec f3 ba c8 $=4$

Key Words	Auxiliary Function
$\begin{aligned} & \text { w16 }=\mathrm{w} 12 \oplus \mathrm{z4}=2 \mathrm{c} 5 \mathrm{c} \quad 65 \text { f1 } \\ & \text { w17 }=\mathrm{w} 16 \oplus \mathrm{w} 13=\mathrm{a} 5 \\ & 73 \\ & \text { w1 } \end{aligned}$	Rotword (w19) $=8 \mathrm{c}$ dd $5043=\times 5$ subword $(x 4)=64$ c1 53 1a $=y 5$ $\operatorname{Rcon}(5)=10 \quad 00 \quad 00 \quad 00$ Y5 $\oplus \mathrm{Rcon}(5)=74$ c1 53 1a $=\mathrm{z} 5$
	Rotword $(w 23)=4046 \mathrm{bd} 4 \mathrm{c}=\mathrm{x} 6$ subword $(x 5)=09$ 5a 7a $29=y 6$ $\operatorname{Rcon}(6)=20 \quad 00 \quad 0000$ $y 6 \oplus \operatorname{Rcon}(6)=29$ 5a 7a $29=z 6$
w24 $=\mathrm{w} 20 \oplus \mathrm{z} 6=71$ c7 4 c c2 $\mathrm{w} 25=\mathrm{w} 24 \oplus \mathrm{w} 21=8 \mathrm{c}$ 29 74 w bf	Rotword (w27) $=$ a5 a9 ef cf $=x 7$ subword $(x 6)=06$ d3 bf $8 a=y 7$ Rcon (7) $=40 \quad 00 \quad 00 \quad 00$ Y7 $\oplus \operatorname{Rcon}(7)=46$ d3 df $8 a=z 7$
	$\begin{aligned} & \text { Rotword }(w 31)=7 d \text { a1 } 4 \mathrm{a} \text { f7 }=\mathrm{x} 8 \\ & \text { Subword }(x 7)=\text { ff } 32 \text { d6 } 68=\mathrm{y}^{8} \\ & \text { Rcon }(8)=80000000 \\ & \mathrm{Y} 8 \oplus \operatorname{Rcon}(8)=7 \mathrm{f} 32 \text { d6 } 68=\mathrm{z} 8 \end{aligned}$
$\begin{aligned} & \text { w32 }=\mathrm{w} 28 \oplus \mathrm{z} 8=48 \quad 26 \quad 45 \quad 20 \\ & \text { w33 }=\mathrm{w} 32 \oplus \mathrm{w} 29=\mathrm{f} 3 \\ & \mathrm{w} \\ & \mathrm{w} \\ & \text { w3 } \end{aligned} \mathrm{a} \text { d7 }$	Rotword (w35) $=\mathrm{be} 0 \mathrm{~b} 38 \quad 3 \mathrm{c}=\mathrm{x} 9$ subword $(x 8)=a \operatorname{lb} 07 \mathrm{eb}=\mathrm{y} 9$ $\operatorname{Rcon}(9)=1 \mathrm{~B} 00 \quad 00 \quad 00$ Y9 \oplus Rcon (9) $=\mathbf{b 5} \quad 2 \mathrm{~b} 07 \quad \mathrm{eb}=\mathrm{z} 9$
$\mathrm{w} 40=\mathrm{w} 36 \oplus \mathrm{z} 10=\mathrm{b} 4$ c w $\mathbf{8 1}$ f3 $\quad 52$	

Start of Round	After SubBytes	After ShiftRows	After MixColumns	Round Key
$\begin{array}{lll}01 & 89 & \text { fe } 76\end{array}$ 23 ab ac 54 45 cd ba 32 67 ef 9810				$\begin{array}{llll} \hline 0 r & 47 & 0 c & \text { ar } \\ 15 & d 9 & \text { b7 } & 71 \\ 71 & \text { e8 } & \text { ad } & 67 \\ c 9 & 59 & d 6 & 98 \end{array}$
0e ce 12 d9 36 72 6 b 2 b 34 25 17 55 ae b6 4 e 88	$\begin{array}{llll} \hline a b & 8 b & 89 & 35 \\ 05 & 40 & 7 f & \mathrm{fl} \\ 18 & 3 \mathrm{r} & 10 & \mathrm{fc} \\ e 4 & 4 e & 2 \mathrm{f} & \mathrm{c} \end{array}$	ab 8b $89 \quad 35$ 4071 fl 05 10 fc 1831 c4 e4 4e $2 f$	b9 94 57 75 e4 $8 e$ 16 51 47 20 $9 a$ 31 c5 d6 15 3 b	$\begin{array}{llll} \hline \text { ac } & 9 b & 97 & 38 \\ 90 & 49 & \text { fe } & 81 \\ 37 & \text { of } & 72 & 15 \\ \text { b0 } & \text { e9 } & 3 \mathrm{f} & \text { a7 } \end{array}$
65 of co $4 d$ 74 c7 es do 70 if es $2 a$ 75 $3 f$ ca $9 c$	4 al 76 ba e3 92 c6 9b 70 $51169 b$ e5 9d 7574 de	$\begin{array}{llll} \hline 4 \mathrm{~d} & 76 & \mathrm{ba} & \mathrm{e} 3 \\ \mathrm{c} 6 & 9 \mathrm{~b} & 70 & 92 \\ 9 \mathrm{~b} & \mathrm{e} 5 & 51 & 16 \\ \text { de } & 9 \mathrm{~d} & 75 & 74 \end{array}$	8e 22 db 12 b2 12 ac 92 af 80 17 $c 1$ 2a $c 5$ $1 e$ 52	d2 49 de e6 c9 80 7e fr 6 b b4 c6 43 b7 5 e 61 c 6
5 c 6 b 05 14 7 b 72 a 2 6 d $\mathrm{b4}$ 34 31 12 9 a 9 b 71 94	4 a 7 f 6 br 2140 3a 3c $\begin{array}{llll}8 d & 18 & c 7 & c 9\end{array}$ D8 14 14	4a 71 6b br $40 \quad 3 a \quad 3 c \quad 21$ $\begin{array}{llll}\text { c7 } & \text { c9 } & 80 & 18\end{array}$ $\begin{array}{lllll}22 & \text { b8 } & 14 & 12\end{array}$	b1 c1 0 b cc ba 13 8 b 07 19 11 $6 \mathrm{a} \mathrm{c3}$ 10 19 24 $5 c$	$\begin{array}{llll} c 0 & 89 & 57 & \text { bl } \\ \text { ar } & 2 f & 51 & \text { ae } \\ \text { or } & 6 \mathrm{~b} & \text { ad } & 7 \mathrm{e} \\ 39 & 67 & 06 & c 0 \end{array}$
71 48 $5 c$ $7 d$ 15 dc da $a 9$ 26 74 c 7 bd 24 $7 e$ 22 9 c	a3 52 4a If $\begin{array}{llll}59 & 86 & 57 & d 3\end{array}$ $\begin{array}{llll}17 & 92 & \text { c6 7a }\end{array}$ $36 \quad 13 \quad 93$ de	$\begin{array}{llll} \text { a3 } & 52 & 4 a & \text { f1 } \\ 86 & 57 & d 3 & 59 \\ \text { c6 } & 7 a & \text { r7 } & 92 \\ \text { de } & 36 & \text { r3 } & 93 \end{array}$	a4 11 fe or 3b 44 06 73 cb ab 62 197 19 b7 07	2c a5 $12 \quad 43$ $\begin{array}{llll}5 c & 73 & 22 & 8 c\end{array}$ 65 de a3 ad $\begin{array}{ll}11 & 96 \\ 90 & 50\end{array}$
f8 b4 0 c 4 c 67 37 24 ff ae a cl ea e8 21 97 dc	418 1e 29 $\begin{array}{llll}85 & 9 a & 36 & 16\end{array}$ $\begin{array}{llll}\text { e4 } & 06 & 78 & 87\end{array}$ 9b fa 8865	$\begin{array}{llll} 41 & 8 d & \text { fe } & 29 \\ 9 \mathrm{a} & 36 & 16 & 85 \\ 78 & 87 & \text { e4 } & 06 \\ 65 & 9 b & \mathrm{fd} & 88 \end{array}$	2 a 47 $\mathrm{c4}$ 48 83 eB 18 ba 84 18 27 23 eb 10 $0 a$ 13	58 fd or 4 c 9 a ee cc 40 $\begin{array}{llll}36 & 38 & 9 b & 46\end{array}$ eb 7 da ed bd
$\begin{array}{lll} \hline 72 & \mathrm{ba} & \mathrm{cb} \\ 04 \\ \mathrm{le} & 06 & \mathrm{dA} \\ \mathrm{fa} \\ \mathrm{~b} 2 & 20 & \mathrm{bc} \\ 65 \\ 00 & 6 \mathrm{~d} & \mathrm{e} 7 \\ \hline \mathrm{e} \end{array}$	$40 \quad 14$ 1f 12 $72 \quad 6148 \quad 21$ 37 b7 6541 $\begin{array}{lll}63 & 3 C & 94\end{array}$	$\begin{array}{llll} \hline 40 & 14 & 1 f & 12 \\ 61 & 48 & 2 d & 72 \\ 65 & 40 & 37 & b 7 \\ 21 & 63 & 3 C & 94 \end{array}$	$7 b$ 05 42 $4 a$ $1 e$ $d 0$ 20 40 94 83 18 52 94 $c 4$ 43 fb	718 cc 83 cf c7 29 e5 a5 4c 74 ef a9 c2 br 52 er
0 a 89 cl 85 d r $\mathrm{c5}$ $\mathrm{c5}$ dB $\mathrm{I7}$ $\mathrm{f7}$ fb 56 7 b 11 14	$\begin{array}{llll} 67 & \text { a7 } & 78 & 97 \\ 35 & 99 & a 6 & 49 \\ 61 & 68 & 68 & \text { or } \\ \text { b1 } & 21 & 82 & \mathrm{ra} \end{array}$	$\begin{array}{llll} 67 & \text { a7 } & 78 & 97 \\ 99 & a 6 & 09 & 35 \\ 68 & \text { or } & 61 & 68 \\ \text { ra } & \text { b1 } & 21 & 82 \end{array}$	ec $1 a$ $c 0$ 80 $0 c$ 50 53 $c 7$ $3 b$ $d 7$ 00 $e r$ b7 22 72 e 0	$\begin{array}{llll} 37 & \mathrm{bb} & 38 & \mathrm{f7} \\ 14 & 3 \mathrm{~d} & \text { a8 } & 7 \mathrm{da} \\ 93 & \mathrm{e} & 08 & \mathrm{al} \\ 48 & \mathrm{f7} & \text { a5 } & 4 \mathrm{a} \end{array}$
db al f 77 18 6 a 8 b ba ab 30 08 4 e fI d d 7 aa	b9 32 41 15 ad $3 c$ $3 d$ 14 c2 04 30 2 I 16 03 $0 e$ $a c$	$\begin{array}{llll} \text { b9 } & 32 & 41 & \mathrm{r} \\ 3 \mathrm{c} & 3 \mathrm{~d} & 14 & \mathrm{ad} \\ 30 & 2 \mathrm{f} & \mathrm{c} 2 & 04 \\ \mathrm{ac} & 16 & 03 & 0 \mathrm{e} \end{array}$	b1 $1 a$ 44 17 $3 d$ $2 f$ $e c$ $b 6$ $0 a$ $6 b$ $2 f$ 42 91 68 13 b1	$\begin{array}{llll} \hline 48 & 13 & c b & 3 c \\ 26 & \text { lb } & \text { c3 } & \text { be } \\ 45 & a 2 & \text { aa } & 0 b \\ 20 & d 7 & 72 & 38 \end{array}$

Summary

> have considered:

- the AES selection process
- the details of Rijndael - the AES cipher
- looked at the steps in each round
- the key expansion
- implementation aspects

